
SDUR6060W ULTRAFAST RECTIFIER

Applications

- Antiparallel diode for high frequency switching devices
- Anti saturation diode
- Snubber diode
- Free wheeling diode in converters and motor control circuits
- Rectifiers in switch mode power supplies (SMPS)
- Inductive heating and melting
- Uninterruptible power supplies (UPS)
- Ultrasonic cleaners and welders

Circuit Diagram

Features

- Ultra-Fast switching
- · High current capability
- Low reverse leakage current
- High surge current capability
- Terminals finish: 100% Pure Tin
- This is a Pb free device
- All SMC parts are traceable to the wafer lot
- Additional testing can be offered upon request

Maximum Ratings(limiting values, T_C =25°C unless otherwise specified)

Characteristics	Symbol	Condition	Max.	Units
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	-	600	V
Average Rectified Forward Current	I _{F (AV)}	Tc=109°C, In DC	60	А
Peak One Cycle Non-Repetitive Surge Current	I _{FSM}	8.3ms, Half Sine pulse	400	Α

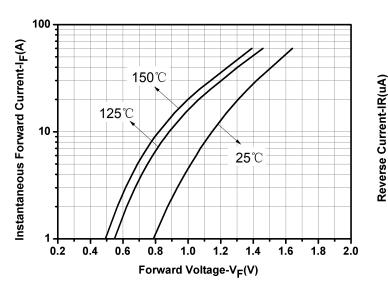
- China Germany Korea Singapore United States
 - http://www.smc-diodes.com sales@ smc-diodes.com •

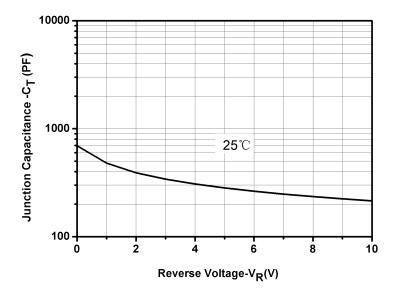
Electrical Characteristics:

Characteristics	Symbol	Condition	Тур.	Max.	Units
Forward Voltage Drop*	V _{F1}	@30A, Pulse, T _J = 25°C @ 60A, Pulse, T _J = 25°C	1.42 1.64	- 2.0	V
Reverse Current*	I _{R1}	$@V_R = \text{rated } V_R$ $T_J = 25^{\circ}C$	1	100	uA
	I _{R2}	@V _R = rated V _R T _J =125°C	1	14	mA
Reverse Recovery Time	t _{rr}	I _F =500mA,I _R =1A,and I _m =250mA	43	50	ns
Reverse Recovery Time	t _{rr}		38	-	ns
Reverse Recovery Charge	Qrr] I _F = 1A, diF/dt = 100A/µs] V _R = 30V, T _J = 25°C	45	-	nC
Reverse Recovery Current	I _{RRM}	,	2.4	-	Α
Reverse Recovery Time	t _{rr}	I _F = 60A, diF/dt = 200A/μs	70	-	ns
Reverse Recovery Charge	Qrr	$V_R = 400V, T_J = 25^{\circ}C$	280	-	nC
Reverse Recovery Current	I _{RRM}		8	-	Α
Reverse Recovery Time	t _{rr}	I _F = 60A, diF/dt = 200A/µs	120	-	ns
Reverse Recovery Charge	Qrr	$V_R = 400V, T_J = 125^{\circ}C$	576	-	nC
Reverse Recovery Current	I _{RRM}		10	-	Α

 $^{^*}$ Pulse width < 300 μ s, duty cycle < 2%

Thermal-Mechanical Specifications:


Characteristics	Symbol	Condition	Specification	Units
Junction Temperature	TJ	-	-55 to +150	°C
Storage Temperature	T _{stg}	-	-55 to +150	°C
Typical Thermal Resistance Junction to Case	R _θ JC	DC operation	0.34	°C/W
Approximate Weight	wt	-	6.28	g
Case Style	TO-247AC			


Ratings and Characteristics Curves

100000 10000 150℃ 🗏 1000 **125**℃ 100 10 -25℃ 1 0.1 240 360 480 120 600 Reverse Voltage- $V_R(V)$

Fig.1-Typical Forward Voltage Characteristics

Fig.2-Typical Reverse Characteristics

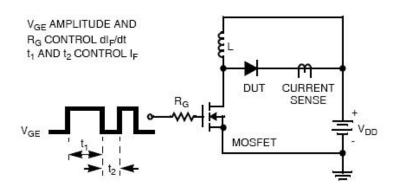
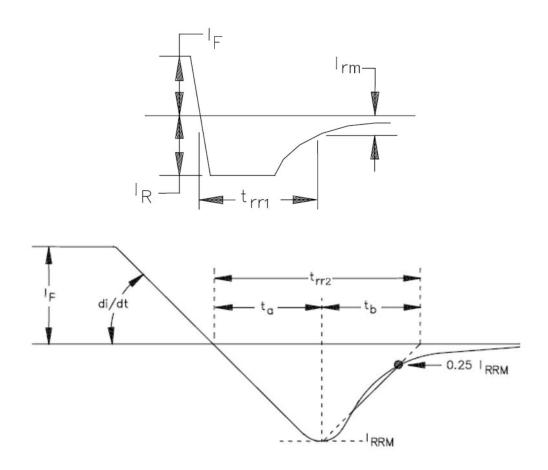
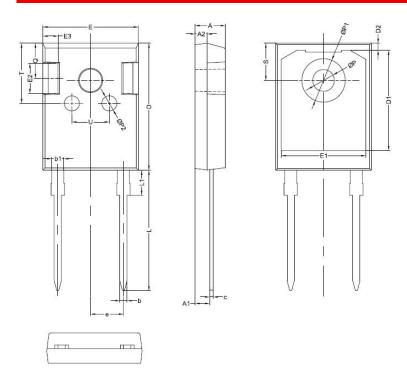


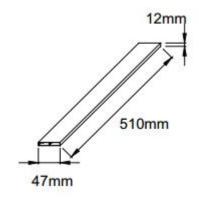
Fig.3-Capacitance vs. Reverse Voltage


Fig.4-Diode Test Circuit

http://www.smc-diodes.com - sales@ smc-diodes.com •

Note: 1. t_{rr1} MIL-STD-750 Test Method 4031, condition "B". 2. t_{rr2} MIL-STD-750 Test Method 4031, condition "D" .


Fig.5-Reverse Recovery Waveform



Mechanical Dimensions TO-247AC

CVMPOL	Millimeters			
SYMBOL	MIN.	TYP.	MAX.	
Α	4.80	5.00	5.20	
A1	2.20	2.41	2.61	
A2	1.90	2.00	2.10	
b	1.10	1.20	1.35	
b1	1.80	2.00	2.20	
С	0.50	0.60	0.75	
D	20.30	21.00	21.20	
D1		16.58		
D2		1.17		
Е	15.60	15.80	16.00	
E1		14.02		
E2		5.00		
E3		2.50		
е		5.44		
L	19.42	19.92	20.42	
L1		4.13		
Р	3.50	3.60	3.70	
P1	7.1	7.19	7.40	
P2		2.50		
Q		5.80		
Q S T	6.05	6.15	6.25	
T		10.00		
U		6.20		

Tube Specification

Marking Diagram

Where XXXXX is YYWWL

SDUR = Device Type 60 = Forward Current (60A) 60 = Reverse Voltage (600V) W = Configuration = SSG = SSG

 SSG
 = SSG

 YY
 = Year

 WW
 = Week

 L
 = Lot Number

Cautions: Molding resin

Epoxy resin UL:94V-0

Ordering Information

Device	Package	Shipping	
SDUR6060W	TO-247AC(Pb-Free)	25pcs / tube	

- China Germany Korea Singapore United States
 - http://www.smc-diodes.com sales@ smc-diodes.com •

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the SMC Diode Solutions sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall SMC Diode Solutions be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). SMC Diode Solution assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall SMC Diode Solutions be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or SMC Diode Solutions.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of SMC Diode Solutions.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations..